A unifying theorem for spectral embedding and clustering
نویسندگان
چکیده
Spectral methods use selected eigenvectors of a data affinity matrix to obtain a data representation that can be trivially clustered or embedded in a low-dimensional space. We present a theorem that explains, for broad classes of affinity matrices and eigenbases, why this works: For successively smaller eigenbases (i.e., using fewer and fewer of the affinity matrix’s dominant eigenvalues and eigenvectors), the angles between “similar” vectors in the new representation shrink while the angles between “dissimilar” vectors grow. Specifically, the sum of the squared cosines of the angles is strictly increasing as the dimensionality of the representation decreases. Thus spectral methods work because the truncated eigenbasis amplifies structure in the data so that any heuristic post-processing is more likely to succeed. We use this result to construct a nonlinear dimensionality reduction (NLDR) algorithm for data sampled from manifolds whose intrinsic coordinate system has linear and cyclic axes, and a novel clustering-by-projections algorithm that requires no post-processing and gives superior performance on “challenge problems” from the recent literature.
منابع مشابه
A note on spectral mapping theorem
This paper aims to present the well-known spectral mapping theorem for multi-variable functions.
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملA Uniqueness Theorem of the Solution of an Inverse Spectral Problem
This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملHyperspectral Image Processing Using Locally Linear Embedding
We describe a method of processing hyperspectral images of natural scenes that uses a combination of kmeans clustering and locally linear embedding (LLE). The primary goal is to assist anomaly detection by preserving spectral uniqueness among the pixels. In order to reduce redundancy among the pixels, adjacent pixels which are spectrally similar are grouped using the k-means clustering algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003